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Abstract — Automated analysis of wood anatomical sections is 

of great interest in understanding the growth and development 

of plants. In this paper, we propose a novel method to 

characterize the cell organization in light microscopic wood 

section images. It aims to identify automatically the cell file in a 

context of mass treatment. The originality of the proposed 

method is our cell classification process. Unlike many 

supervised methods, our method is self conditioned, based on a 

decision tree which thresholds are automatically evaluated 

according to specific biological characteristics of each image. In 

order to evaluate the performances of the proposed system and 

allow the certification of the cell line detection, we introduced 

indices of quality characterizing the accuracy of results and 

parameters of these results. Those are related to topological 

and geometrical characters of the cell file at both global and 

local scales. Moreover, we propose an index of certainty for 

selective results exploitation in further statistical studies. The 

proposed method was is implemented as a plugin for ImageJ.  

Tests hold on various wood section well contrasted images show 

good results in terms of cell file detection and process speed. 

Keywords: Image processing, pattern recognition, wood 

microscopic images, cell segmentation, file identification. 

 

I. INTRODUCTION 

The development of the tree results from the primary 
growth and secondary growth. The primary growth concerns 
the extension and branching of the axes. Whereas the 
secondary growth is on their thickening. Among others, 
issues of carbon squestration and wood energy leads to 
consider both structural and functional aspects using 
acumulating approaches. Howhever, these approaches, 
concerning secondary growth and its relationships between 
secondary and primary growth, are based on fragmentary 
studies, mainly raising from data acquisition costs. 
Secondary growth results from the cambial activity, which is 
among other things to the origin of wood (xylem) and 
consequently the different cellular elements that constitute it. 
The understanding of mechanisms of growth of the cambium  
will go through the study of rhythmicity of cell patterns, 
their disruption or modification through space and time. 
Environment and its fluctuations influence  the 
differentiation of wood’s elements (from the divisions of 
cambial cells) which constrain us to  follow the production 
of specific cell organizations. To simplify, two  
organizations are considered: firstly the growth rings which 
represents cell’s production at a given time [1], and secondly 

the cell lines which represents the activity of an initial cell 
during time [2]. For example, [3] underlie the importance of 
secondary growth organizations by studing cellular patterns, 
their spatial rhythmicity, their variability along different 
growth rings. For its part, the study of cell lines is presented 
as a promising enable to understand the development, 
differentiation and temporal rhythmicity of cells [4]. 
Automating the study of cell lines should permit to closer 
links with the functional aspects and ecology of species: 
Wood is a continuous recording of changes in the 
development of the tree (the lesser known) and its 
environment (the most work, eg dendrochronology, tree-
rings).  

Progress in terms of the image acquisition devices and 
their analysis allow us to consider the access to quality's 
information on various extensive areas in the plant. Cross 
section microscopic images analysis shows interest in both 
cell feature characterization and detection but also for higher 
structure character estimation as shown for instance by Wu 
et al on root sections [5]. 

 
Automatic identification of wood cellular structures as 

cell files is a new challenge in structural biology of plants 
[6], which requires a multidisciplinary expertise.  

In bio-imaging, cell segmentation has been intensively 
studied by researchers in image processing with various 
approaches [7][8][9]. For example, [10] combine four 
classical algorithms to segment white blood cells in bone 
marrow image: watershed [11], snake [12], multi-resolution 
analysis [13] and dynamic programming. This kind of 
approach based on mixing many algorithms, shows the 
difficulty of segmenting cell images with high biological 
variability. The algorythms should be adapted to the 
application and to the specific cells characters. In particular, 
for wood cross section, we have to consider both cell local 
geometry and arrangement. 

In such wood cellular organizations, some authors 
propose to introduce some geometric models to describe the 
topological neighborhood of cells. For example, [14] or [15] 
rely on an oriented graph to extract cell files in images of the 
gymnosperms.  

From a technical point of view, we did not found any 
software solution allowing automatic identification of cell 
files. Some specific commercial tools as WinCell [23], exist 
for the analysis of wood cells, but they do not allow 
recognition and characterization of the cellular organization. 
Moreover, it is not possible to add new functionalities. More 
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generic commercial software such as Visilog [24], offer a 
rich development environment in image processing but they 
are quite expensive and not sufficiently specialized for our 
application. Open source platforms as ImageJ [20][25] are 
an attractive option: they allow to enrich the source code 
with specific functionalities while facilitating the exchange 
and dissemination of methods. Therefore we chose this 
solution to  implement our algorithm.  

The proposed method of automatic identification and 
modeling of cell files extends the research presented by [15]. 
In this work, cell file identification in light microscopy 
images is based on a preliminary identification of the cells. It 
is a supervised classification requiring the definition, then 
the use of a large training database. As the variability of 
wood anatomy is huge, significant results can be obtained 
only for a limited number of wood species, sharing close and 
simple anatomical features (gymnosperms in this case). We 
introduce here a specific model of the cell lines recognition 
avoiding supervised training and allowing results quality 
quantification. Applying this model, as shown in the 
following sections, we can build a generic tool suitable for 
both gymniosperm and angiosperm wood cross section 
images. 

II. MATERIAL AND METHOD 

A. Preparation and digitization  

We aim to process histological stained sections of 
angiosperm and gymnosperm wood, and more specifically of 
Mahogany, Fraxinus Angustifolia, Pine Black, Pine 
Carabinsis and Fir tree.  

Wood cross sections of 20-25 µm of thickness are 
produced with a vibratome. They are then immersed in an 
aqueous chlorinated solution to clean the cellular content. A 
colouring of the cell wall is then performed to increase the 
contrast with the lumen. Various types of colouring agents 
can be used as the methylene blue, the toluidine blue or the 
safranine. The sections are then digitized by a Olympus 
DP71 LCD camera mounted on a Olympus BX51 
microscope. The magnification is choosen around ×100.  

 

 
Figure 1. Images of histological stained wood sections. A: Fraxinus 

(angiosperm) colored with safranin. B: Pinus Caribensis (gymnosperm) 

colored with methylene blue. Notice the different anatomical structures: 

Vessel (V), Ray (R), Fiber (F), Tracheid (T) and Resin Canal (RC). 

Different anatomical structures as vessels, fibers, 
tracheids, resin canals, or rays are visible around the cell 
files (see Fig. 1). With such a magnification value, we can 
count at least 20 consecutive cells and then distinguish the 
cell files and the smallest interesting structure covers a 
surface of at least 10 by 10 pixels.  

 The resulting images are in color (coded on 24 bits) with 
a resolution close to 2000 by 2000 pixels. 

B. Cell file processing 

Identification of cell files is based on the search of  
alignment of cells which share similar geometric (i.e. size, 
shape) and densitometric (i.e. color) properties. The concept 
of alignment implies a specific cellular organization which is 
emphasized by the neighborhood relations between cells.  

Our approach is divided into three steps (see Fig. 2): first 
cell identification is performed in order to individualize the 
cells in the image, then the cellular organization step detects 
and individualizes the alignments of anatomical structures, 
and finally, the classification step classifies anatomically and 
types qualitatively the cell files. In the following sections, 
we detail these three steps. 

 

 

Figure 2. Overview of the cell file identification algorithm. 

1) Cell identification step 
 
Microscope images present a "pepper-and-salt" noise 

inferred by the thermal effect of the lamp. We attenuate this 
impulsive noise by applying a median filter of radius 3 
pixels. Images show alternations of clear and dark areas 
representing respecitvely the cell lumens and the cell walls. 
To increase the contrast between the two areas, we apply the 
Difference of Gaussian (DoG) [16] method. This is a 
bandpass filter. It thresholds the frequencies corresponding 
to the lumens. To obtain the lumens (see Fig. 3), the DoG 
filter subtracts a  Gaussian light blurred image (blurring 
parameter close to the size of the cell wall) to the highly 
blurred image (blurring parameter set to 1/10 of the image 
width).  Nota that the blurring parameters were set 
experimentally and are different from the classical 1.6 ratio 
used for DoG smoothing in edge detection. 

 

   
Figure 3. Difference of Gaussian filtering on a cross-section of Mahogany 

stained with toluidine blue. A: the image obtained by applying a small 
Gaussian blurring (σ = 3 pixels). B: the image resulting from a strong 

Gaussian blurring (σ = (image width)/10). C: subtraction of images A and B 

which increases the contrast wall / lumen.  
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We obtain an image where the walls have zero intensity 
and the lumens have a higher intensity.  

This colour image is then converted in grey levels. 
Average colour channel value is used since no specific 
channel seems significant. Moreover this conversion 
simplifies specific process definition potentially resulting 
from different colouring protocols.  

The greyscale image cell extraction is obtained by the 
classical Watershed algorithm [11]. The idea is to consider a 
grey level image as a topographic relief, and to calculate the 
watershed lines by “flooding” the relief. The resulting 
watershed lines define a partition of the image. The ridge 
lines constitute the intercellular boundaries and correspond 
to the middle lamella. The lines of the ridges of the 
Wathersed (fig. 4-c) give the boundary between two adjacent 
watersheds. The dual graph is the adjacency graph of the 
basins, it connects two by two the geometric centers of the 
basins incident to the same edge. The basins are 
superimposable to image cells, we speak of the adjacency 
graph of the cells (Fig. 4-d).  

 

   
 

   
 

Figure 4. Cell individualization of a Mahogany cross section. A: native 

image. B: watershed segmentation result with the crest lines crossing the 
lumen. C: cleaned watershed: the crest lines are replaced by curvilinear 

edges shown in yellow; they correspond to the middle lamella; the points 

extra yellow match the geometric center of the watershed therefore 
biological cells. D: dual watershed graph. This adjacency graph, in green 

connects  cell centers with their neighbour; notice that the degree of vertices 

is greater than four showing the staggered pattern of the cells. 

2) Cellular Organization  
Unlike approaches [15] and [14], our recognition of lines 

based exclusively on a constraint path of the adjacency 
graph of the cells. More specifically, the construction of cell 
lines is based on the one hand on geometric criteria, in 
particular the general orientation of adjacencies cell, and, 
secondly on topological criteria, in particular on 
configurations of cellular adjacency.  

 

The edges of the adjacency graph represent connections 
between neighboring cells and their orientations give an 
indication of the preferred directions of the cell 
arrangements. On our studies, cells are arranged in staggered 
rows, and cell lines are rectilinear and two in two parallels. 
Therefore, the orientations of edges adjacency follow three 
directions: a main one, corresponding to the cell alignments 
and two secondaries, corresponding to the organization in 
staggered rows (fig. 4-d). To compute the main direction, we 
use R. Jones (1996) method, studying the distribution of 
angles formed by each edge of the adjacency graph with the 
horizontal. The distribution is then trimodal : the major 
mode shows the orientation most present in the adjacency 
graph, that is to say the general orientation of the lines (Fig. 
5). 

  
Figure 5. Direction distribution histograms formed by edges of the 

adjacency graph with the horizontal. A: The main mode centered on 0° 

corresponds to horizontal lines; B: The histogram shows one mode splitted 

on -90 and 90° values corresponding to vertical lines. 

 Considering now the lines. The construction is progressive 

and based on four principles: alignment search, feedback 

check, overlap management and chaining. The alignment 

principle allows for each vertex V of the graph to find the 

next vertex NV in the cell lines. Each vertex neighbor of V 

is a potential candidate. We will retain one that maintains the 

best spatial alignment (in a range of ± 35 °), and whose 

underlying cell shows the highest geometrical similarities 

with the previous one. The line is gradually built from the 

initial edge, by successive additions of consecutive edges 

preserving the geometric continuity. At each step, the drift of 

the line is minimized under this geometrical constraint. We 

chose the criterion of Bray-Curtis [21] (see Fig. 6) for 

similarity cost evaluation since well adapted to surface 

characterizations. When this criterion tends to zero, the 

compared cells can be considered as similar.  

 

     
     

     
 

Figure 6. Formula of Bray Curtis. Where « n » is the surface of current cell 
and « m » is the surface of neighbor cell. When the criterion tends to 0, the 

cells show a similar surface. 

Each cell bellowing to a cell line path is given a score value : 

the sum of the angle deviation with its predecessor and the 

criterion of  Bray-Curtis. 

0 

50 

100 

150 

200 

-90 -45 0 45 90 

0 

50 

100 

150 

200 

-90 -45 0 45 90 

A B 

A  B  

C  D  

60



 

 The path of the line stops when there are not vertices 

anymore candidate. 

A cell line direction is independent from graph traversal 
orientation. This property is used to validate or invalidate 
any line segment or part of if. The process described above 
is applied again starting from the end edge, by inverting the 
direction of progress in the graph. We note this path as 
"backward", opposed to the initial path "forward". This 
define the principle of Forward / Backward : a line is 
validated when both forward and backward paths are strictly 
superposables. In the case where the paths are not identical, 
the initial forward path is gradually reduced until reaching a 
stable forward/backward sub-path. Specifically, whenever a 
difference appears in backward path, the corresponding 
segment is deleted from the original line: the edges and their 
scores are released, initialized to an infinite value. The 
backward tip is updated from the last reached position. In the 
strictly superposable case, the score of each cell of the line is 
decreased by half insuring higth stability of the line towards 
overlaping (see below).   

 
Indeed, a cell belongs to a unique file. This property 

leads to the following rule: each vertex belongs to one cell 
line and only one. In some cases, during its construction, a 
line may use one or several cells, mobilized by a line already 
constructed. In this case, each of these vertex is attributed to 
the line for which its score is minimal: it is the principle of 
overlaping. Two scenarii may occur: 

 The existing line keeps its vertex; the line under 
construction will have to find another path or stop. 

 The existing line loses its summit to the detriment of 
the line under construction. Here, all the summits of 
the existing line situated after the lost summit are 
released: their respective score takes an infinite 
value, indicating they are again available. 

 
Due to the presence of intrusions, tearings or a lack of 

adjency (Fig. 7-a), it is not unusual to detect a given line in 
splitted part. 

 

 
 

 
Figure 7. A: Result of treatment chain without connection. B: result whit 

connection (Bottom). There is one color by file. 

The principle of merging allows to concatenate several 
part of line, using simple topological rules, to establish 
whole lines. The idea is based on two observations : (i) the 
lines cross the image throughout, (ii) the lines do not 

intersect (Fig. 8-a). As a result, if the parts T2 and T2 ' are 
adjacent to the line F1 and F3, it is likely that T2 and T2 ' are 
two parts of the same line F2. At present only the parts in 
two same lines are concatenate that is to say as belonging to 
the same line. In other scenarii the process is stopped.  

 

 

 
Figure 8. A: a two neighbours connection scheme. Sections T2 and T2’ are 

squeezed between lines F1 and F3; therefore T2 and T2' are probably 
derived from a common file F2. B: a multiple neighbours scheme; in this 

case, rules of adjency are used to drop the case in a two neighbours one. 

3) Classification step 
The cell typing is the ultimate step: it allows to classify 

different cells (fibers, tracheids, vessels, rays, ...). It is 
realized from geometric and densitometric characterization 
of the watersheds associated with the vertices of the 
adjacency graph  of cells. Unlike the work of [15] and [14], 
supervised classification was discarded because of the  
difficulty of building learning games sufficiently complete 
and discriminating, due to the existing biological variability. 

 
A decision tree discriminates the anatomical structures. It 

was established with wood anatomists from the two 
following hypotheses:  

1) The perimeter of cells, noted parameter T, allows to 

differentiate the "big" structures from the "small" cells. 
2) The circularity of cells, noted parameter C, allows 

to differentiate rays (globally lengthened) from the vessels 
(globally circular). 

The decision tree given in Fig. 9 is applied to basins with 
a clear area corresponding to the lumen. It requests two 
threshold values which are automatically estimated for every 
image. For each parameter, both values are calculated from 
the grey image, from two disjoint groups using a two-means 
clustering [22]. This classical method divides n observations 
into two clusters, so minimizes the intra-classe variance and 
maximizes the interclasse variance. The threshold is then 
given by the median value between the upper bound of the 
lowest group  and the lower bound of the stronger group.  

A 

B 

B 

A 

61



 

 
Figure 9. Decision Tree. T represents the threshold of the perimeter and C 

the threshold of circularity. The thresholds are automatically rated by a 2-
means clustering applied to all values from the image. Only cells with a 

lumen are processed by the decision tree. 

After the alignments identification and the biological 
typing, we can deliver a set of figures characterizing the 
shape, size, nature of biological structures (walls, lights, 
cells, lines ...). These characteristics, of interest for 
anatomists, are defined by self conditioned procedures. As 
part of a mass treatment it is interesting to characterize the 
accuracy of these assessments. Both caracteristic quality and 
automated define parameters are computed defining indexes 
of certainty. An index is assigned for each calculated 
parameter. The certainty index concerns  the geometric 
parameters of structural elements and the steps of the 
process of identifying lines. 

At the scale of structural elements (fiber, vessels, radius 
...), evaluation of this index depends on the parameter itself. 
For example, the certainty of the surface or the shape of the 
lumen is directly connected to the local degree of sharpness 
of the image (Fig. 14): the boundary between the wall and 
the lumen being obtained by distribution of the pixels of the 
cell two intensity classes (light intensities  and dark 
intensities), it depends irremediably on local dynamics of the 
image. 

 
At scale structure elements (lines), evaluation of the 

index depends on the construction process and the nature of 
the result. To "certify" the cell lines, three criteria are used : 

 The overall score of the line, characterizing 
topological relationships of the line with its 
neighbors. The identification of the topological 
position allows  to assign a global additional score to 
the line: 0 for a line crossing the image throughout, 1 
for a line composed of simple parts, 2 for non 
indentifided segment, 3 for single cell, 4 for defects. 

 The average of the scores of its cells obtained during 
the construction of the line (not to be confused with 
the index of certainty parameters). Each vertex 
added to the line will be assigned a score defined by 
the sum of the deviation of the angular aperture and 
the similarity coefficient. This method allows to 
restrict the path of the line  without guaranteeing 
possible overlapping or intersection with a nearby 
line. 

 The length, characterizing the representativeness in 
the image: the more a line is long, the more it is sure. 

 
An index of certainty is assigned to the line according a 

linear combinaison of these three scores. The indices of 

certainties (parameters and lines) are used to filter or classify 
the numerical results generated for each lines identified. 

 
The indices of certainty of the lines are totally 

independent from indices certainties of the parameters 
associated with the cells. 

 
The visual representation of the global score of the lines, 

and in particular the use of a color code, allows a fast and 
efficient processing check,  distinguishing the whole lines 
form the cellular insertions. The colour code is green for the 
lines automatically identified, is blue for lines automatically 
rebuilt and is red for complex configurations (Fig. 10). 

 

 
Figure 10. Automatic identification of cell lines from a cross section of 

mahogany. A: lines  random colouring is used. B: colour qualifies the cell 
files; the lines automatically identified in green, the lines automatically 

rebuilt in blue and the complex configurations in red. 

The method has been implemented in Java and integrated 
as a plugin in the ImageJ free platform. We use additional 
free libraries sush as the Java Universal Network / Graph 
Framework [26] for efficient data structure management. We 
are currently posting the application on the web [27].  

III. RESULTS AND DISCUSSION 

The tests were led from a sample of images 
representative of biological variability, possessing a dozen 
colored sections of different species of angiosperms (list) 
and gymnosperms (list) (Fig. 11). 

 

 

 
Figure 11. Extract from the test set consists of cross sections of angiosperms 

and gymnosperms. A : mahogany colored with toluidine blue for which the 
continuity of queues is preserved in spite of the vessel elements. B : fir 

colored with methylene blue. C : black pine colored with safranin having 

resin canals. D : fir colored with toluidine blue showing cells blocked. 
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A. Biological aspecsts 

Moreover, the colour encoding can quickly locate the 
complex biological configurations requiring the expertise of 
an anatomist to be identified (in red, Fig. 12). 

 

 

 
Figure 12. Automatic identification of cell lines of the extract on the game 

of trying to figure 11. The colour code is given in figure 10. 

As shown in the table below, our method works well on 
images presenting a structured organization with a marked 
wall / lumen contrast, in regard to data acquisition, 
management of lines and the magnification used. For 
configurations showing low colour contrast or complex 
cellular organizations the lines are badly detected. 
 

Table 1. Summary of some significant results: the size of images processed, 

the number of cells extracted, the CPU time obtained on a machine with an 
Intel Xeon at 2.3GHz and a Total Quality Index defined as the ratio of the 

number of lines automatically identified and reconstructed on the total 

number of lines. 

Species 
Size 

(pixels) 
Cells 

numbers 
Times (sec) 

Total 
Quality (%) 

Mahogany 1024x768 1359 14.3 83 

Fir 1360x1024 800 12.4 92 

Black Pine 1 1600x1200 1873 23.2 73 

Caribean 
Pine  

1360x1024 828 11.5 91 

Black Pine 2 1600x1200 1458 16.1 93 

 
What about in terms of quantity, that is to say in terms of 

numerical measures? 
The overall rating of the line remains the most important 

indicator. It enables us in particular to detect all single files: 
all lines described as obvious by anatomists have an overall 
zero score. 

On the test set, the lines are automatically detected at 
60% in the images. This figure is not significant since it 
depends on the anatomical configurations. The unidentified 
lines can be automatically excluded from statistical 
processing. The amount lost can be easily offset by the 
increase of the images treatable. 

 
It is important to evaluate the accuracy of measurement. 

The Figure 13 presents the comparison of about sixty 
normalized aeras got from manual and automated method. 

The coefficient of determination tends of 1 showing the 
areas are well correlated. The slope of regression line is 
weakly superior to 1 indicating a weak over-valuation of the 
automated method. The weak gap of 0.0127 confirms the 
middle error of 5% on right areas. The automated method 
seems over-valuated the measurements (at least the expert 
under-valuates the measures!). Only certainty: the automated 
method is repeatable. 

 
Figure 13. Basins surfaces study on Mahogany. In abcissa, the normalized 

aeras got from the fully manual method. In ordinate, those got from the 
automated method. The coefficient of determination is close to 1, showing a 

very well adjustment of areas. 

The major limit to the automatic identification of lines 
comes from the image content, that is to say the photometric 
characteristics of the image, and biological configurations.  

 

   

   

   
Figure 14. A right cross sections of three native species. On the left, the 

automatic identification of cell lines. A : not colored pine treated in 
transmission; Detection is good despite the low constrate Wall / Lumen. B : 

ash colored with safranin; Detection of cells is good, but the method only 

produces sections due to the complexity of biological organization. C : pine 
colored with methylene blue; Identification is biased by the presence of 

local inversion of contrast at the joinction wood summer / winter. 

The images with a dynamic intensity locally reversed, for 
example the junction wood winter / summer wood (Fig. 14-
c), remain difficult to treat. Our method is based on the 
image contrast, so watersheds corresponding to the cells are 
badly detected, and thus the detection of files is incorrect 
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and incomplete. The images of washer sanded wood 
(unstained) are treated in reflection: light does not pass 
through the sample. Thus the lumens appear in colour almost 
close to the walls one, with not sufficient contrast to ensure 
proper recognition of watersheds and proper identification of 
lines. The wood sections not colored are treated by 
transmission, crossed by light. They are less contrasted than 
the stained sections. But the difference wall / lumen is 
pronounced enough to allow the algorithm to correctly 
identify the lines (Fig. 14-a). For complex cellular 
organizations (Fig. 14-b), where cell alignments are not 
obvious, new rules for the path and for the reconstruction 
shloud be established with the biologists. 

 
The files are created using only geometric and 

topological rules on the basins. It is important to make sure 
of the robustness of the detection of the basins, expecially 
internes of insensitivity to blur and image orientation. A first 
study was conducted on the absorption of the blur found in 
images related to microsope views side effect or sample 
flatness. 

 
Figure 15. Compared watershed result on Pine cross section. A : crests lines 

of a sharp image. B : crests lines of a blurred image. Outline of the basins is 

nearly identical between a sharp and a blur image. On the sharp image, a 

small additional basin of a detachment of the wall issued from cutting. This 

basin is skipped during the supernumerary removal phase. 

Acquisitions of the same zone of the image with different 
focus were performed to evaluate the stability of our 
computational method. In particular, we made a statistical 
study on the variability of cropping cells. The intercellular 
lines obtained by the algorithm of Watershed are generally 
invariant to blurring of the image. Indeed, they correspond to 
the curves reverse slopes of intensity: the smoothing of the 
image produced by optical blur attenuates the intensity 
without changing the look of intensity variations. The crest 
lines remain unchanged (Fig. 15). 

 
Figure 16. Basins surfaces study on Mahogany. In abcissa, the normalized 

aeras got from sharp images. In ordinate, those got from blur images. The 

coefficient of determination is close to 1, showing a very well adjustment of 
areas. 

Figure 16 shows the comparison of a sixty normalized area 

obtained from a sharp and a blurred image. The coefficient 

of determination tends to 1 showing areas are well 

correlated. The slope of the regression line is slightly less 

than 1 indicating low undervaluation on blurred images. The 

difference of 0.0037 confirms the average error of 2.81% on 

sharp image. The method gives results almost identical 

regardless of the sharpness of the image 

 
The method described is working correctly for images 

that contain the one hand high contrast between the walls 
and lumens (without local inversion of color) and other hand 
a visible cellular organization. Under these conditions all the 
obvious lines by qualified experts are correctly identified, 
with a significant time save (a typical manual expert 
identification requires ten hours on our samples). Moreover, 
the index of certainty allows the selective exploitation of 
results for statistical studies. 

IV. CONCLUSIONS 

Automated analysis of wood anatomical sections is of 
great interest in understanding the growth and development 
of plants. In a frame of over studies on wood structure, we 
propose a original method for automatic detection of cell 
lines, operational in mass treatment. It applies to digital 
images of coloured transverse cut wood. Identification of 
lines based on research alignment of cells presenting similar 
geometrical and densitometric characteristics. The notion of 
alignment implies to know how to set up the relations of 
neighborhood between cells. Identification of lines is made 
from an adjacency graph for the path constrained graph with 
an orientation and similarity criteria. The originality of the 
method compared to a supervised method is that it 
automatically creates rules evaluated for each image and not 
a set of rules to be applied on all images. The lines described 
as obvious by anatomists are correctly identified by our 
method, with a drastic drop of time cost. To "certify" the cell 
lines, we have introduced the indices characterizing the 
quality of results and parameters of these results. The 
method described works correctly for images with high 
contrast between the walls and lumens and a clear cellular 
organization. Under these conditions all the obvious lines by 
qualified experts are correctly identified. Moreover, the 
index of certainty allows the selective exploitation of results 
for statistical studies. 

 
Three future work axes are being considered: 

1. The enlargement of the major zones of study in 

order to follow the lines of several rings (Fig. 17). For 

this, it is necessary to adapt the processing of image 

mosaics. Two problems are directly related: first, the 

treatment of different photometric behavior in the same 

image, in particular the transition wood winter / 

summer wood. Secondly, the joining of the results at 

the edges of the images pavement. 

2. The study can be extended to sanded wood, for 

which the contrast wall / lumen is less contrasted. 

3. The enrichment of the cell typing method that is not 

currently able to differentiate all kind of vessels. Work 
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on the walls texture can be considered to resolve the 

limitation. 

 

Cell file identification has to deal with other open difficulties 

like the passage tree ring or the junction between the 

different images. The construction of cell lines will be 

reviewed to match between images that may or may not be 

recovered. 

 
Figure 17. Abutting mosaic of a cross section of Black Pine, colored with 

safranin, 100x. 

As a summary, this work is a first contribution to develop 

methods for automatic image processing that will mainly to 

identify and characterize, in mosaics depicting field’s broad 

observation, cellular organizations, and the cells that 

compose them. The implementation aims to obtain a rapid 

cell typing, automatic and reliable to process statistically 

significantly large sets of data. 
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